Friday, April 18, 2008

Tahun 2008 Indonesia Negara Produsen Palm Oil Terbesar Dunia

“Tahun 2008, produksi minyak sawit Indonesia diperhitungkan sudah mencapai 18 jutaan ton, sementara pada tahun yang sama, Malaysia masih memproduksi 17 jutaan ton,” kata Ketua Harian Gabungan Pengusaha Kelapa Sawit Indonesia (Gapki) Derom Bangun, di sela-sela Muscab Gapki Sumut memilih kepengurusan asosiasi itu untuk periode tahun 2006-2009. Tahun ini, produksi minyak sawit Indonesia masih 15 jutaan ton dan tahun 2007 produksi komoditi itu ditargetkan naik 1,4 juta ton atau menjadi 16,4 juta ton. “Eksportir dan pemerintah harus mulai bersiap-siap menjadi negara produsen terbesar minyak sawit karena tantangan ekspor komoditi itu juga pasti bertambah,” katanya.

Kelapa SawitSelain ketentuan pengapalan CPO harus menggunakan kapal yang dindingnya berlapis dua, ekspor CPO Indonesia “dibayangi” dengan ketentuan harus ramah lingkungan yang disepakati dalam “Meja Bundar Minyak Sawit Lestari”. “Semua pelaku persawitan harus mulai memanfaatkan momentum Indonesia yang akan menjadi negara produsen minyak sawit terbesar dunia itu,” katanya. Selain harus meningkatkan mutu produksinya, eksportir diminta meningkatkan lobi untuk meningkatkan pasar ekspornya. Sementara pemerintah diimbau memberikan dukungan dengan berbagai kebijakan yang mendukung produksi dan ekspor minyak sawit itu. Tahun ini, ekspor minyak sawit nasional diperkirakan minimal mencapai 11,3 juta ton dengan realisasi ekspor hingga Juli sudah mencapai 6,56 juta ton masing-masing untuk jenis crude palm oil (CPO) 2,91 juta ton dan produk minyak sawit lainnya sebanyak 3,65 juta ton. Ekspor minyak sawit itu akan terus bertambah setiap tahunnya. Pada 2007, misalnya, ekspor minyak sawit diprediksi bisa mencapai 11,7 juta ton dan naik lagi pada 2008 ketika Indonesia jadi negara produsen terbesar dunia.

Peningkatan ekspor minyak sawit Indonesia tersebut, ujar Presdir PT.Kinar Lapiga itu, dipicu oleh menguatnya terus permintaan impor dari berbagai negara khususnya India dan Cina. Pada tahun depan, permintaan impor India menjadi 2, 5juta MT dari realisasi ekspor tahun ini yang ditargetkan sebanyak 2,2 juta ton dengan realisasi hingga Juli 2006 yang sudah mencapai 1,23 juta ton. Sementara ekspor ke Cina juga dipatikan mengalami kenaikan terus. Tahun ini, ekspor ke Cina diperkirakan menembus 1,8 juta ton dan 2,1 juta ton pada tahun 2007. Realisasi ekspor ke Cina itu pada Januari-Juli 2006 sudah mencapai 1,03 juta ton.

Berkilaunya Minyak Sawit

Licinnya minyak sawit ternyata cukup ampuh meluruhkan ketatnya sikap bank agar rela menggelontorkan banyak duit untuk pengembangan perkebunan dan industri turunan komoditas tersebut.

Dahulu sektor perkebunan belum banyak dilirik perbankan karena dinilai berisiko tinggi. Namun sejak pemerintah menggelar program revitalisasi 2006-2010, dana publik di bank pun mengucur deras ke sektor perkebunan.

Program revitalisasi perkebunan dengan kebutuhan dana Rp40 triliun pada 2 juta hektare ini, memang tak hanya sawit karena pemerintah juga ingin adanya pengembangan komoditas kakao dan karet.

Sawit tetap menjadi primadona di industri perkebunan, meski pengembangan komoditas ini diterpa isu kartel, rencana pembatasan lahan untuk holding company, kenaikan harga patokan ekspor (HPE) hingga soal pabrik tanpa kebun.

Tapi kilau harga crude palm oil masih cukup menggiurkan bagi perbankan mencari bunga besar dengan memberikan pinjaman kepada perusahaan-perusahaan yang bermain di kebun sawit.

Kredit bank memang tak hanya yang komersial (kredit investasi dan modal kerja biasa) tetapi juga dibungkus dalam kredit program pengembangan energi nabati dan revitalisasi perkebunan (KPEN-RP).

Pada kredit program, lima bank tercatat yang siap untuk mendukung dengan komitmen pendanaan hingga Rp25,48 triliun, yaitu BRI, Bank Mandiri, Bukopin, Bank Nagari, dan Bank Pembangunan Daerah Sumut.

Selaku bank dengan aset terbesar nasional, Bank Mandiri bahkan memiliki dua unit untuk melayani perkebunan, yaitu di layanan kredit korporasi (plantation specialist) dan satunya di small business group.

Kredit perkebunan

Sunarso, Senior Vice President Plantation Specialist Corporate Banking Bank Mandiri mengatakan baki debet kredit perkebunan sawit hingga 31 Juni 2007 mencapai Rp10,5 triliun dari limit plafon Rp17,8 triliun.

Nilai tersebut merupakan 73% dari total kredit perkebunan (termasuk komoditas lainnya seperti karet, tebu, kopi dan teh) Bank Mandiri sebanyak Rp15,08 triliun hingga paruh pertama tahun ini.

Dari dana Rp10,5 triliun itu sebagian besar terserap pemain-pemain besar di industri perkebunan kelapa sawit seperti sejumlah PTPN, kelompok usaha Sinar Mas, Lonsum, Astra Agro Lestari, Musim Mas. Sejak akhir tahun lalu paling tidak lebih dari 53 perusahaan besar yang merupakan kelompok korporasi bidang perkebunan sawit yang menjadi sasaran kredit Bank Mandiri.

Awal tahun misalnya Sinar Mas, Incassi Raya, Satria Group serta Permata Hijau Sawit digelontori duit US$432 juta (Rp3,9 triliun).

Sinar Mas bakal membuka lahan kelapa sawit seluas 67.000 hektare dengan nilai proyek Rp2,8 triliun. Kelompok usaha ini juga akan membangun pabrik pengolahan kelapa sawit dengan kapasitas 30 ton perjam dengan nilai proyek Rp45 miliar di Sumatra.

Incassi tahun ini membuka lahan perkebunan seluas 32.000 hektare di Sumatra Barat dan Kalimantan Barat dengan nilai proyek senilai Rp725 miliar. Selain itu pabrik biodiesel berkapasitas 200.000 ton pertahun senilai Rp270 miliar juga akan dibangun di Sumbar.

Sementara Satria hendak membuka perkebunan kelapa sawit seluas 10.000 hektare di Kalimantan Tengah senilai Rp300 miliar. Sementara itu, Permata Hijau Sawit mendapatkan fasilitas pembiayaan proyek pabrik pengolahan biodiesel dengan kapasitas 198.000 tan pertahun dengan nilai proyek Rp270 miliar di Riau. Itu belum seberapa, sebab pekan lalu, Bank Mandiri juga menyalurkan kredit senilai US$71,59 juta kepada Union Sampoerna Triputra Persada Group (USTP) mengakuisisi lahan perkebunan sawit milik Kulim Sdn Bhd.

Lolos

Berita yang seakan lolos perhatian publik ini menarik di tengah derasnya investor asing yang masuk menggarap lahan kebun sawit di Tanah Air. USTP merupakan perusahaan kongsi milik dua eksekutif Astra TP Rachmat dan Benny Subianto, serta Soetjahjono Winarko salah satu anggota keluarga kelompok usaha HM Sampoerna.

Perusahaan Malaysia itu sepakat menjual lahan seluas 63.305 hektare di kabupaten Sukamara, Seroyan dan Lamandau di Kalimantan Tengah dengan nilai US$125 juta (sekitar Rp1,1 triliun).

Ahmad Mohamad Managing Director Kulim, beralasan hengkangnya Kulim dari usaha produksi di Indonesia lebih dikarenakan restrukturisasi internal, tak mau berpolemik soal kartel dan pembatasan lahan.

Dia justru menyebutkan Kulim akan memfokuskan kegiatan produksi di Papua Nugini (44.713 ha) dan kepulauan Solomon (6.594 ha) serta tentu saja di Malaysia (32.644 ha). Bank Negara Indonesia lain lagi. Dirut BNI Sigit Pramono bahkan membentuk divisi khusus yang menangani penyaluran kredit dan mitigasi risiko untuk kredit perkebunan, terutama sawit.

Tahun lalu, ada 50 debitor BNI yang menerima kredit senilai Rp3,35 triliun untuk mengembangkan lahan perkebunan seluas 411.000 ha. Sedangkan tahun ini, bank pelat merah tersebut telah menyepakati penyaluran kredit awal Rp1,2 triliun kepada enam nasabah, baik debitor lama maupun baru seperti Sampoerna Agro, Sungai Budi Group, Rekayasa Group, Sinar Mas Group, Musimas Group dan Bio Energi Indonesia.

Sigit menegaskan bank yang dipimpinnya menargetkan mampu menyalurkan kredit rata-rata sebesar Rp5 triliun baik untuk usaha replanting lahan kelapa sawit maupun pabrik derivatifnya.

Komposisi Trigliserida Dalam Minyak Kelapa Sawit

Komposisi Trigliserida Dalam Minyak Kelapa Sawit
Komposisi Asam Lemak Minyak Kelapa Sawit

Komposisi Trigliserida Dalam Minyak Kelapa Sawit

Saturday, April 12, 2008

Pabrik Kelapa Sawit Mini

  • Pabrik kelapa sawit (PKS) mini merupakan salah satu teknologi alternatif pengolahan kelapa sawit dengan kapasitas 0,5-1 ton TBS/jam. PKS mini dirancang khusus untuk perkebunan kelapa sawit dengan luas 160-300 ha. PKS mini sangat mudah dioperasikan, hanya memerlukan tenaga kerja 6 orang/shift, menggunakan limbah sawit sebagai bahan bakar, dan hanya memerlukan lahan 2.500 m2.
  • PKS M-1000 terdiri atas delapan unit peralatan pengolahan, yaitu satu unit boiler yang mampu menghasilkan 600 kg uap/jam dengan tekanan 3 kg/cm, dua unit steriliser, satu unit thresher dengankapasitas 1.000 kg TBS/jam, satu unit double screw press mini, satu unit tangki klarifikasi dengan kapasitas 1.200 liter, satu unit tangki penampung minyak, satu unit deperikarper dengan kapasitas 200 kg biji+serat/jam, serta satu unit nut cracker dengan kapasitas 500 kg biji/jam.
  • Dengan biaya investasi PKS M-1000 sebesar Rp1,5 miliar, biaya pengolahan TBS menjadi crude palm oil (CPO) adalah Rp368,23/kg TBS dengan asumsi harga CPO Rp3.150/kg, inti Rp1.675/kg dan harga beli TBS Rp567,4/kg. PKS Mi-1000 secara ekonomis layak diusahakan dengan parameter ekonomi sebagai berikut: IRR= 24,78%; B/C= 1,18; NPV= Rp708.305.000; payback period= 3 tahun.
  • Sasaran pengembangan PKS M-1000 adalah kelompok pekebun kecil kelapa sawit swadana, usaha perkebunan besar skala kecil, dan usaha perkebunan skala menengah yang ongkos angkut TBS ke PKS lebih dari Rp75/kg TBS.
  • Manfaat yang diperoleh petani kelapa sawit dengan adanya PKS M-1000 adalah petani lebih mudah melakukan pemasaran TBS, harga TBS yang dihasilkan petani menjadi bersaing sehingga pendapatanpetani bertambah. Selain itu, tandang kosong sawit (TKS) yang merupakan limbah padat PKS dapat dimanfaatkan sebagai bahan organik.

Aplikasi Limbah Cair Pabrik Kelapa Sawit pada Perkebunan Kelapa Sawit

  • Limbah cair pabrik kelapa sawit dapat digunakan sebagai pupuk. Aplikasi limbah cair memiliki keuntungan antara lain dapat mengurangi biaya pengolahan limbah cair dan sekaligus berfungsi sebagai sumber hara bagi tanaman kelapa sawit.
  • Kualifikasi limbah cair yang digunakan mempunyai kandungan BOD 3.500–5.000 mg/l yang berasal dari kolam anaerobik primer.
  • Metode aplikasi limbah cair yang umum digunakan adalah sistem flatbed, yaitu dengan mengalirkan limbah melalui pipa ke bak-bak distribusi dan selanjutnya ke parit primer dan sekunder (flatbed). Ukuran flatbed adalah 2,5 m x 1,5 m x 0,25 m. Dosis pengaliran limbah cair adalah 12,6 mm ekuivalen curah hujan (ECH)/ha/bulan atau 126 m3/ha/bulan.
  • Kandungan hara pada 1m3 limbah cair setara dengan 1,5 kg urea, 0,3 kg SP-36, 3,0 kg MOP, dan 1,2 kg kieserit. Pabrik kelapa sawit dengan kapasitas 30 ton/jam akan menghasilkan sekitar 480 m3 limbah cair per hari, sehingga areal yang dapat diaplikasi sekitar 100-120 ha.
  • Pembangunan instalasi aplikasi limbah cair membutuhkan biaya yang relatif mahal. Namun investasi ini diikuti dengan peningkatan produksi TBS dan penghematan biaya pupuk sehingga penerimaan juga meningkat. Aplikasi limbah cair 12,6 mm ECH/ha/bulan dapat menghemat biaya pemupukan hingga 46%/ha. Di samping itu, aplikasi limbah cair juga akan mengurangi biaya pengolahan limbah.
  • Limbah cair pabrik kelapa sawit telah banyak digunakan di perkebunan kelapa sawit baik perkebunan negara maupun perkebunan swasta. Penggunaan limbah cair mampu meningkatkan produksi TBS 16-60%. Limbah cair tidak menimbulkan pengaruh yang buruk terhadap kualitas air tanah di sekitar areal aplikasinya.

Kelapa Sawit

Evaluasi Lahan
  • Tahap awal dari pembukaan perkebunan kelapa sawit adalah melakukan evaluasi lahan. Evaluasi kesesuaian lahan dilakukan terhadap satuan lahan yang telah ditetapkan berdasarkan hasil survei tanah. Evaluasi kesesuaian lahan didahului oleh kegiatan survei dan pemetaan tanah untuk mendeskripsikan satuan-satuan lahan. Evaluasi kesesuaian lahan didasarkan pada penilaian beberapa karakteristik lahan yang disesuaikan dengan syarat tumbuh tanaman kelapa sawit.
Pengendalian Hama Tikus dengan Burung Hantu
  • Burung hantu (Tyto alba) merupakan predator tikus yang sangat potensial pada perkebunan kelapa sawit. Predator ini mampu menurunkan serangan tikus pada tanaman muda hingga di bawah 5%. Sementara itu, ambang kritis serangan tikus di perkebunan kelapa sawit sebesar 10%.
Pengendalian Hayati Ulat Api Menggunakan Entomopatogenik
  • Pengendalian hayati ulat api Setothosea asigna pada kelapa sawit dilakukan dengan menggunakan mikroorganisme entomopatogenik, yaitu virus ß Nudaurelia, multi plenucleo-polyhedrovirus (MNPV), dan jamur Cordyceps aff. militaris.
Feromon untuk Pengendalian Kumbang Tanduk
  • Kumbang tanduk (Oryctes rhinoceros) umumnya menyerang tanaman kelapa sawit muda dan dapat menurunkan produksi tandan buah segar (TBS) pada tahun pertama menghasilkan hingga 69%. Di samping itu, kumbang tanduk juga mematikan tanaman muda sampai 25%.
Biofungisida Marfu Pengendali Jamur Ganoderma boninense
  • Penyebab busuk pangkal batang (BPB) pada tanaman kelapa sawit adalah Ganoderma boninense yang merupakan jamur tanah hutan hujan tropis. Jamur G. boninense bersifat saprofit (dapat hidup pada sisa tanaman) dan akan berubah menjadi patogenik apabila bertemu dengan akar tanaman kelapa sawit yang tumbuh di dekatnya. Serangan BPB dapat terjadi sejak bibit sampai tanaman tua, tetapi gejala penyakit biasanya baru terlihat setelah bibit ditanam di lapangan.

Friday, April 11, 2008

Kenapa kelapa sawit menggantikan hutan hujan?

Saat ini banyak yang telah dilakukan dalam rangka pengubahan hutan hujan dengan keanekaragaman hayati milik Asia tersebut menjadi pengolahan kelapa sawit. Organisasi lingkungan hidup telah memperingatkan bahwa dengan memakan makanan yang mengandung minyak kelapa, konsumen Barat secara langsung ikut membantu perusakan habitat orangutan dan ekosistem yang sensitif.

Jadi, mengapa perkebunan kelapa sawit saat ini luasnya mencapai jutaan hektar mencakup Malaysia, Indonesia, dan Thailand? Kenapa kelapa sawit menjadi buah panen nomor satu, mengalahkan kompetitor terdekatnya, pisang yang rendah hati?

Jawabannya ada pada produktivitas panenan yang tidak sejalan. Sederhananya, kelapa sawit adalah bibit minyak yang paling produktif di dunia. Satu hektar kelapa sawit dapat menghasilkan 5.000 kg minyak mentah, atau hampir 6.000 liter minyak mentah menurut data dari JourneytoForever. Sebagai pembanding, kedelai dan jagung - hasil yang kerap digembar-gemborkan sebagai sumber bahan bakan biologis yang unggul - hanya menghasilkan sekitar 446 dan 172 liter per hektar.

Selain biofuel, kelapa sawit juga dipakaikan untuk beribu-ribu kegunaan lain dari bahan-bahan makanan ke pelumas mesin hingga dasar kosmetik. Kelapa sawit telah menjadi produk agrikultur yang sangat penting untuk negara-negara tropis di seluruh dunia, terutama saat harga minyak mentah mencapai 70 USD per barrel. Sebagai contohnya, Indonesia saat ini merupakan negara penghasil minyak kelapa terbesar kedua di dunia, perkebunanan kelapa sawitnya mencakup 5,3 juta hektar di tahun 2004, menurut laporan dari Friends of the Earth-Netherlands.

Perkebunan ini telah menghasilkan 11,4 juta ton kubik minyak kelapa mentah dengan nilai ekspor sebesar 4,43 milyar USD dan mendatangkan (secara resmi) 42,4 juta USD ke dalam kas negara. Karenanya, nilai dari minyak kelapa terus meningkat. Harganya saat ini mencapai lebih dari 400 USD per ton kubik, atau sekitar 54 USD per barrel - cukup kompetitif bila dibandingkan dengan petroleum.

Walaupun kelapa sawit cukup sukses di Asia, namun sebenarnya ini bukan tanaman asli bagi kawasan tersebut. Kelapa sawit Afrika (Elaeis guineensis) berasal dari kawasan tropis Afrika, tersebar di hutan hujan Sierra Leone hingga Kongo, Republik Demokratis Kongo. Spesiesnya dikenalkan pada Malaysia pada awal abad ke-20 dan pertama kali ditanam untuk tujuan komersial pada tahun 1917.

Saat ini hampir separuh dari lahan yang telah diolah dan ditanami di Malaysia merupakan lahan kelapa sawit, dan negara tersebut telah menjadi produsen dan eksportir kelapa sawit terbesar, walau Indonesia dengan cepat telah menunjukkan dirinya. Kedua negara, Indonesia dan Malaysia, mengekspor produk-produk tersebut dalam jumlah besar ke Cina: ekspor Malaysia sendiri ke negara tersebut diperkirakan akan meningkat lebih dari 20 persen dari 2,9 juta ton kubik di tahun 2005 hingga lebih dari 3,2 juta ton kubik di tahun 2006, merepresentasikan hampir 1 persen dari keseluruhan nilai ekspor Malaysia.

Minyak kelapa berasal dari buah tumbuhan tersebut, yang satu tandannya bisa mempunyai berat sekitar 40-50 kg. Seratus kilogram dari bibit minyak ini bisa menghasilkan sekitar 20 kg minyak. Tandan buah ini biasa dipanen dengan menggunakan tangan, pekerjaan yang sulit di daerah iklim tropis dimana kelapa sawit tumbuh dengan subur. Di Malaysia, kebanyakan dari pekerjaan ini dilakukan oleh tenaga kerja dari luar, kebanyakan dari Indonesia. Walau kelapa sawit dapat hidup lebih lama dari 150 tahun dan tumbuh hingga 80 kaki di alam bebas, kelapa sawit yang ditanam ini biasanya ditebang atau diracun setelah berusia 25 tahun saat tingginya telah mencapai 30 kaki. Bila lebih tinggi dari 30 kaki, maka memanen buahnya akan menimbulkan kesulitan tersendiri.

Minyak kelapa digunakan sebagai salah satu bahan mentah dari produksi biodiesel, bahan bakar yang berasal dari minyak sayur atau lemak hewani. Pada umumnya, biodiesel ini bisa diturunkan tingkatannya dan, saat terbakar, memiliki emisi yang lebih sedikit dibandingkan dengan bahan bakar petroleum tradisional. Biasanya, biofeul ini dicampur dengan bahan bakar petroleum tradisional, walau memungkinkan pula untuk menjalankan mesin diesel hanya dengan menggunakan biodieasel, yang menjadikannya menjanjikan sebagai sumber energi alternatif pengganti bahan bakar fosil.

Para enviromentalis umumnya mendukung biofeuls ini karena rendahnya polusi yang mereka munculkan, sementara yang lain menyetujui ide untuk mengurangi ketergantungan akan minyak di Timur Tengah karena banyak tumbuhan biodiesel dapat ditanam di kawasan lain atau bahkan diproduksi sendiri. Dengan ide ini di dalam pikiran mereka, para pembuat kebijakan dari Asia hingga Eropa telah menunjukkan ketertarikan dan memberikan dorongan untuk mempromosikan dan menggunakan biofuel tersebut.

Jadi, kenapa penanaman kelapa sawit menuai perhatian? Untuk para environmentalis, permasalahan utama dengan minyak kelapa sebagai biodiesel terletak pada bagaimana tanaman tersebut diolah. Dalam beberapa tahun terakhir, banyak area hutan alami yang dibuka di seantero Asia untuk perkebunan kelapa sawit. Perubahan ini telah menurunkan keanekaragaman hayati, meningkatkan kerentanan pada bahaya kebakaran, dan berdampak pada ketergantungan masyarakat sekitar akan produk dan jasa yang telah disediakan oleh ekosistem hutan.

Selain hilangnya ekosistem hutan, produksi minyak kelapa, seperti yang sedang dipraktekkan saat ini, dapat menyebabkan kerusakan yang cukup parah bagi lingkungan hidup. Di tahun 2001, produksi Malaysia sebanyak 7 juta ton minyak kelapa mentah menghasilkan hingga 9,9 juta ton limbah minyak padat, fiber kelapa, dan batok, serta 10 juta ton limbah yang merusak dari minyak kelapa, yaitu campuran polusi dari batok yang hancur, air, dan residu lemak, yang mempunyai dampak negatif pada ekosistem akuatik.

Lebih jauh lagi, penggunaan pestisida, herbisida, dan pupuk berbasis petroleum secara bebas membuat yakin bahwa kebanyakan pengolahan minyak kelapa tak hanya menyebabkan polusi pada tingkat lokal, namun juga berkontribusi pada emisi gas rumah kaca. Melihat Malaysia merupakan salah satu dari produser yang paling efisien, produksi di daerah lain mungkin lebih berpolusi. Perkebunan di Indonesia sangat merusak karenanya setelah 25 tahun masa panen, lahan kelapa sawit kebanyakan ditinggalkan dan menjadi semak belukar. Tanah mungkin akan kehabisan nutrisi, terutama pada lingkungan yang mengandung asam, sehingga beberapa tanaman mungkin tumbuh, menjadikan wilayah tersebut tanpa vegetasi selain rumput-rumput liar yang akan mudah sekali terbakar.

Karena alasan ini, komunitas ilmuwan sangat prihatin dengan munculnya proposal dari pemerintah Indonesia untuk mengubah kawasan terpencil dan hutan hujan dengan keanekaragaman hayati di Borneo menjadi perkebunan kelapa sawit. Usulan kawasan monokultur yang sangat luas ini dapat mengancam musnahnya keanekaragaman hayati legendaris kawasan tersebut - menurut WWF sebanyak 361 spesies hewan telah ditemukan di pulau tersebut dalam satu dekade lalu - sekaligus menelantarkan penduduk lokal, termasuk suku Dayak, penduduk asli hutan yang terkenal akan keahlian berburu dan melacaknya.

Rencana ambisius: Menurut laporan Friend of Earth, di pertengahan 1990an Indonesia telah menyiapkan 9,13 juta hektar untuk ditanami kelapa sawit. Di tahun 2004, hanya sekitar 58 persen dari area ini yang benar-benar ditanami, walau area hutan hujan alami yang luas telah terlanjur dibuka demi produksi kelapa sawit. Contohnya, dalam makalah milik Lesley Potter dari Australian National University, walau hanya 303.000 hektar dari 2 juta hektar lahan di Kalimantan Timur yang disiapkan untuk pengembangan kelapa sawit telah ditanami, namun sekitar 3,1 juta hektar hutan telah dibuka dengan kedok pembangunan perkebunan.

Indonesia telah mengumumkan rencananya untuk melipatgandakan produksi minyak kelapa mentahnya pada tahun 2025, suatu target yang akan membutuhkan 2 kali lipat peningkatan di hasilnya - sesuatu yang sangat mungkin melihat dari keberhasilan negara tetangganya Malaisya - atau justru memperluas daerah yang akan ditanami kelapa sawit. Laporan tersebut menyebutkan bahwa Indonesia sepertinya akan menggunakan kedua pilihan yang ada. Sesuai usulan investasi tahun 2005, yang dibuat oleh Perusahaan Perkebunan Negara PT Perkebunan Nusantara (PTPN), Indonesia akan mengembangkan sekitar 1,8 juta hektar di kawasan perbatasan Indonesia-Malaysia, dimana kebanyakan sisa hutan yang lengkap masih ada.

Cina akan terlibat dalam rencana ini, dengan menginvestasikan 7,5 milyar USD di proyek infrastruktur dan energi, termasuk menyediakan modal untuk perkebunan kelapa sawit. Investor Cina secara langsung akan mengendalikan sekitar 600.000 hektar perkebunan kelapa sawit, sementara 1,2 juta hektar akan dikendalikan oleh perusahaan-perusahaan Indonesia. Berdasarkan eksplorasi dari konsesi sekitar 100.000 hektar, total biaya yang dibuthkan proyek ini diramalkan oleh Friends of the Earth akan mencapai 8,6 milyar USD.

Proyek ini nantinya akan mempekerjakan hingga 400.000 tenaga kerja dan menghasilkan pemasukan tahunan untuk pajak negara sebesar 45 juta USD. Usulan PTPN ini menyarankan agar perkebunan didirikan di tiga taman nasional, Betung Kerihun (800.000 hektar), Kayan Mentarang (1.360.000 hektar), dan Danau Sentarum (132.000 hektar) serta hutan lindung di sekitarnya dan hutan yang berada dalam konsesi penebangan.

Untuk minyak kelapa atau sesuatu hal yang lain? Di atas kertas, melihat luasnya area hutan tropis di kawasan tersebut dan tingginya nilai minyak kelapa, rencana tersebut tampaknya pilihan yang menguntungkan dilihat dari sisi ekonomi. Bagaimanapun juga, analisa lebih lanjut mengenai kecocokan lahan untuk ditanami kelapa sawit membuat para pemerhati lingkungan kembali bertanya mengenai tujuan utama rencana tersebut, mengesankan bahwa ada kepentingan lain.

Survey pada kawasan tersebut yang dilakukan oleh WWF menemukan bahwa sebagian besar lahan tersebut sangat buruk bila digunakan untuk kelapa sawit. Permukaan yang bergunung-gunung dikombinasikan dengan ketinggian dan iklim yang tak sesuai untuk kelapa sawit berarti paling tinggi hanya sekitar 10 persen yang cocok digunakan untuk penanamannya dan ini memberikan kredibilitas bagi kelompok-kelompok environmentalis untuk menunjukkan bahwa seluruh rencana tersebut mungkin saja hanya merupakan kedok untuk penebangan hutan besar-besaran guna mengambil seluruh sumber kayu yang ada di wilayah tersebut.

Greenomics, salah satu organisasi kehutanan non pemerintah, telah menghitung nilai kayu di kawasan perbatasan mencapai 26 milyar USD. Menebang wilayah yang disiapkan untuk perkebunan kelapa sawit bisa mendatangkan pemasukan bersih yang substansial bagi perusahaan penebangan tersebut dan pendapatan dari pajak bagi pemerintah Indonesia. Lebih lanjut lagi, karena proyek kelapa sawit ini membutuhkan konstruksi jalan yang besar, infrastruktur ini justru dapat mengantarkan kayu yang bernilai tinggi - sekalipun sebelumnya tak dapat diakses - ke pasar.

Secara bersamaan, pemerintah juga dapat memperluas program transmigrasi untuk memindahkan penduduk yang telah memadati Jawa, sesuatu yang telah dilakukan secara luas di bagian lain Kalimantan. Terakhir, pemerintah dapat memperlambat berkurangnya pemasukan dari pajak akibat adanya perdagangan kayu ilegal yang semakin berkembang di kawasan perbatasan - diperkirakan oleh Menteri Kehutanan Indonesia beberapa tahun yang lalu sebanyak 230.000 hingga 250.000 meter kubik kayu per bulan.

Melihat rekor sebelumnya dalam pengembangan kelapa sawit dan kesesuaian tanah yang dipertanyakan, kelompok lingkungan hidup menduga bahwa untuk memulai proyek ini, hutan di luar wilayah konsesi akan dibuka, sementara para pemilik tanah tak pernah bermaksud untuk benar-benar menanam pohon. Makalah milik Friends of the Earth mencatat bahwa "banyak ijin perkebunan yang dikeluarkan oleh pemerintah tidak benar-benar dikembangkan menjadi lahan kelapa sawit. Malahan, lahan-lahan ini sepertinya diterlantarkan karena para pemegang ijin tidak mengerjakan lahan tersebut."

Bagi para kelompok lingkungan hidup ini, yang sebenarnya bermasalah dari tren ini adalah itu semua merupakan pemborosan, dan terjadi di beberapa tempat yang memiliki ekosistem keanekaragaman hayati paling banyak di planet. Makalah tersebut menyebutkan sebuah penelitian yang dilakukan oleh Greenomics yang menemukan "60 persen dari seluruh pengubahan fungsi hutan dengan tujuan menanam dan perkebunan kelapa sawit masih terjadi di hutan-hutan yang bagus di tahun 2004-2005."

Sekedar berubah pikiran atau ada maksud tersembunyi? Pada 28 Maret 2006, di Konvensi Keanekaragaman Hayati PBB di Ciritiba, Brazil, pemerintah Indonesia mengumumkan akan mendukung inisiatif dari WWF untuk melindungi "Jantung Borneo". WWF menyimpulkan bahwa dengan pengumuman ini berarti Indonesia akan menggagalkan rencana untuk membuat perkebunan kelapa sawit terbesar di dunia di wilayah perbatasan Kalimantan, membuat para kelompok lingkungan hidup di seluruh dunia bergembira bahwa lokasi keanekaragaman hayati ini tak akan hilang karena pembangunan.

Bagaimanapun juga, rupanya kegembiraan mereka terlalu dini. Laporan dari Friends of the Earth melihat pengumuman Indonesia dari sisi yang berbeda, disebutkan "walaupun begitu, komitmen ini bukan berarti bahwa rencana untuk memperluas perkebunan kelapa sawit di kawasan perbatasan dibatalkan." Dikatakan pula bahwa Presiden Indonesia Yudhoyono "belum memberikan pernyataan resmi pada publik mengenai proyek kelapa sawit di perbatasan dibatalkan . . . [dan bahwa] Presiden masih mendukung keseluruhan program pembangunan di perbatasan."

Lebih lanjut lagi, laporan tersebut menyatakan bahwa pemerintah Indonesia sebelumnya telah setuju pada Cina menjadikan lahan tersebut bisa digunakan untuk pengembangan kelapa sawit dan tak akan mengingkari komitmen tersebut. Laporan ini juga memberikan catatan bahwa pemerintah telah mengumumkan rencana tambahan untuk memperluas area perkebunan ini menjadi 3 juta hektar agar dapat memenuhi peningkatan permintaan biofuel. Akhirnya laporan tersebut memberikan peringatan "komitmen yang dibuat oleh pemerintah pusat mungkin saja diabaikan sama sekali oleh pemerintah tingkat propinsi dan kabupaten." Friends of the Earth menambahkan bahwa Indonesia pada akhirnya mungkin tidak akan membatalkan proyek tersebut.

Pertempuran memperebutkan jantung Borneo. Walau masih belum jelas status perkebunan kelapa sawit di Borneo Tengah, laporan Friends of the Earth memberikan satu set rekomendasi untuk dapat menggunakan hutan hujan di Kalimantan dengan lebih baik secara ekologi maupun ekonomi. Organisasi tersebut menyebutkan bahwa pernyataan dari Presiden Indonesia Yudhoyono diperlukan untuk memperjelas status resmi dari proyek kelapa sawit. Jika pemerintah tidak bermaksud untuk melanjutkan dengan proyek yang diusulkan tersebut, maka pertama-tama pemerintah harus memfokuskan diri pada meningkatnya produktifitas di perkebunan yang telah ada, bukannya membuka lahan baru untuk kelapa sawit.

Ini bisa dilakukan dengan menggunakan bibiat unggul dan menerapkan praktek berkebun yang lebih baik dari seluruh bagian dunia, serta mendorong untuk menanam kembali perkebunan yang telah diterlantarkan. Laporan tersebut juga berpendapat bahwa akan lebih bijaksana jika Indonesia menggunakan sertifikasi argikultur untuk kelapa sawitnya agar meyakinkan bahwa produknya berasal dari perkebunan yang dijalankan dengan baik.

Satu set kriteria telah dibuat di bawah Principles and Criteria of the Roundtable for Sustainable Palm Oil (RSPO). Bagian kunci untuk rencana sertifikasi adalah megajak negara pengguna untuk bergabung. Jika negara-negara ini gagal untuk mendapatkan kelapa sawit dari sumber yang mendukung, maka tak akan ada bantuan bagi para produsen untuk menjalankan perkebunan mereka dengan cara yang lebih baik. Karenanya, menurut laporan tersebut, negara-negara industri harus didorong untuk menerima produk kelapa sawit yang merupakan hasil dari sumber yang telah tersertifikasi.

Di tingkat lokal, Friends of the Earth berpendapat bahwa pemerintah Indonesia sebaiknya berfokus pada membantu masyarakat lokal untuk meningkatkan akses pasar bagi produk hutan non-kayu dan pertanian hutan, sekaligus meminimalkan dampak potensial dari jalan apapun dan proyek infrastruktur yang terkait yang merupakan hasil dari rencana tadi.

Akhirnya, untuk membuktikan betapa menggunakan ijin kelapa sawit dengan salah adalah serius, pemerintah Indonesia butuh untuk memperkuat hukum yang ada. Hingga saat ini, beberapa petugas perkebunantelah didenda atau dipenjarakan karena penggundulan hutan secara ilegal atau menyebabkan kebakaran hutan, dan pemilik tanah hanya memiliki sedikit alasan untuk mengikuti peraturan yang ada.

Di luar rekomendasi ini, situasi saat ini mungkin akan memunculkan kesempatan untuk menukarkan konservasi hutan dengan emisi karbon. Atas usulan inisiatif dari 10 negara berkembang, negara industri akan membayar konservasi hutan hujan yang akan ditukar dengan "kredit karbon" yang akan turut dihitung dalam target emisi mereka di bawah Protokol Kyoto atau perjanjian internasional lainnya.

Mungkin akan ada pula potensi inisiatif pembicaraan pivat dimana konsesi yang belum ditebang dan dikembangkan dapat dibeli oleh pihak swasta dan disiapkan untuk memberikan keuntungan lingkungan hidup jangka panjang.

Terlepas dari jalan yang telah dipilih, Friends of the Earth dan asosiasi kelompok lingkungan hidup telah menegaskan bahwa pemerintah Indonesia seharusnya mempunyai maksud sendiri dan membuat keputusan dengan berdasar pada evaluasi teliti dengan seluruh informasi yang memungkinkan. Karena negara ini masih memiliki hutan tropis yang sangat luas di kawasan Asia, keputusan mengenai hutan adalah kunci dari kelangsungan jangka panjang keanekaragaman kawasan tersebut dan pemeliharaan pelayanan ekologi.

Saturday, April 5, 2008

Industri Kelapa Sawit

Indonesia merupakan salah satu penghasil komoditas kelapa sawit terbesar di dunia. Kebutuhan buah kelapa sawit meningkat tajam seiring dengan meningkatnya kebutuhan CPO dunia, seperti yang terjadi beberapa bulan terahir ini.

Dengan meningkatnya harga minyak mentah dunia, menjadikan CPO sebagai pilihan untuk bahan baku pembuatan bio energi. Peluang industri pengolahan kelapa sawit (PKS) masih sangat prospek untuk memenuhi pasar dalam dan luar negeri.

Dengan didukung tenaga ahli yang berpengalaman puluhan tahun di bidang industri pengolahan kelapa sawit, kami menawarkan Jasa Pembangunan Industri Pengolahan Kelapa Sawit (PKS) secara komprehensif (turn key) mulai konstruksi pabrik, mesin pengolahan sampai dengan instalasi pengolahan limbah

- Produk yang dihasilkan: CPO
- Bahan Baku : Kelapa Sawit.
- Kapasitas Bahan Baku : mulai 5 ton/jam,30 ton/jam, 60 ton/jam, atau sesuai permintaan

Harga CPO Pengaruhi Minyak Dunia

Harga patokan ekspor (HPE) crude palm oil (CPO) di Indonesia akan terus mengikuti pergerakan harga CPO internasional. "Kalau harga CPO internasional naik terus seperti sekarang, HPE-nya juga akan naik." Penetapan HPE CPO dilakukan melalui tim interdep yang beranggotakan unsur Departemen Pertanian, Departemen Keuangan, Departemen Perdagangan serta asosiasi-asosiasi terkait.

"HPE untuk CPO itu dihitung dengan cermat dengan melibatkan semua pemangku kepentingan. Ada rumusannya. Tidak dikarang-karang atau begitu saja turun dari langit." Sebelumnya HPE CPO terus melambung seiring meningkatnya harga CPO di Rotterdam yang selama ini menjadi harga referensi dunia, termasuk dalam penetapan HPE di Indonesia.

Secara berurutan sejak Januari hingga Maret 2008, pemerintah Indonesia melalui Departemen Perdagangan menetapkan HPE CPO 869 dolar AS per metrik ton (MT), 944 dolar dan 988 dolar per MT. Seperti HPE CPO untuk Maret 2008, pemerintah telah menetapkan sebesar 988 dolar per MT dengan harga referensi Rotterdam rata-rata sebulan sebelumnya 1.064 dolar per MT.

Terhadap HPE yang terlihat lebih rendah dari harga referensi Rotterdam karena selisihnya mencapai 76 dolar AS, Diah mengatakan, pengurangan itu karena faktor-faktor biaya seperti biaya pengapalan, biaya asuransi dan beberapa biaya lain yang lazim dalam ekspor CPO.

Adanya selisih antara HPE yang menjadi patokan untuk pungutan ekspor (PE) tersebut, besarannya bervariasi antara 70-an sampai 100-an dolar AS/MT yang dipengaruhi faktor-faktor biaya dalam ekspor CPO. Untuk biaya pengapalan saja selalu berubah sesuai lokasi pelabuhan, jenis dan ukuran kapal, harga BBM yang dipengaruhi harga minyak dunia, serta biaya pungutan bungker (bunker surcharge). "Yang jelas HPE ditentukan berdasarkan harga rata-rata internasional sebulan sebelumnya dikurangi faktor-faktor biaya."

Besaran HPE sendiri, ujarnya, akan ditinjau setiap bulan sesuai dinamika di pasar serta faktor lain yang mempengaruhinya. Yang jelas, HPE telah ditentukan dengan sangat matang dan melibatkan seluruh pemangku kepentingan. Jadi selama harga minyak dunia masih naik turun, sangat berpotensi mempengaruhi harga CPO dunia.

Harga CPO di Rotterdam sendiri, terus menunjukkan tren naik, mencapai rekor baru 1.395 dolar AS/MT. Sementara Menteri Perdagangan Mari Elka Pangestu saat rapat kerja Departemen Perdagangan dengan Komisi VI DPR, belum lama ini mengatakan pemerintah tidak akan melarang maupun membatasi ekspor CPO, walaupun harga CPO dunia terus melambung. Namun pemerintah menetapkan patokan ekspor progresif untuk Maret ditetapkan 10 persen, mengingat patokan harga rata-rata CPO di Rotterdam sebesar 1.068 dolar AS/MT.

Skema Pengolahan Sawit


Skema Pengolahan Sawit


Semoga Bermanfaat,...............!!!!!!!!!!!!

Thursday, April 3, 2008

Margarine

Margarines were originally developed in 1869 as an alternative to butter, which was in short supply and expensive. The first margarines were made from animal fats, but today most margarine is formulated with vegetable oils. The product range now includes table margarines, bakery margarines, specialized puff pastry margarine, and has recently been extended to various "low calorie" spreads, which essentially contain much higher levels of water and lower levels of fat than those legally required in margarine.


Table margarines fall into two main types, packet margarines which are designed to be spreadable at ambient temperature, and tub margarines which are spreadable on removal from the refrigerator, at a temperature of 5-10°C. Typically solid fat content curves for the two types are illustrated in chart 2, which shows the much lower solid fat content required in the tub margarine.

When packet margarines are intended for use in a tropical climate, with ambient temperatures around 30°C, higher solids contents than those indicated in Chart 2 are required to avoid melting.

With the availability of hydrogenated oils of various grades, there is a large choice of ingredients for blends with the desired solids content profiles. Individual manufacturers will usually base their choice on local availability and on price, as well as the technical consideration of a fine crystal structure to give the required spreadable character.

Palm Oil Non-Food Products

The environmental benefits of using vegetable oils, especially palm-based products, are many. They are renewable resources with good environmental characteristics, biodegradable, low ecotoxicity and toxicity to humans, and emit no net CO2 to the atmosphere. When supplies are low, more crops can be planted to make up the shortfall, which would be a boon to agricultural economies. Petroleum, on the other hand, is a finite and depleting resource.

Besides the environmental benefits, there will, in the future, also be other advantages from the wider use of vegetable oils. One of them is the social benefit from rejuvenating rural communities through the establishment of local industries and by providing farmers with additional income, thereby securing their livelihood.

Much interest has been generated in the industrial use of renewable resources, including palm oil. It is for this reason that renewable feedstocks can become one of the major players in the chemical industry in the near future. This might then result in a new economic order, placing agriculture in the economic forefront as one of the largest wealth-generating sectors.

About 80% of all oil palm product is used for food applications, while the other 20% is used in non-food applications. Because of the higher market value of these non-food derived palm products, the non-food category is expected to grow in importance. The non-food uses of palm oil and palm kernel oil can be classified into two categories; using the oils directly or by processing them to oleochemicals (chemicals derived from oils or fats).

Products produced using the oils directly include; soaps, plastics, drilling mud and even palm based diesel substitute. Products produced from the oleochemical route include; candles, lotions, body oils, shampoos, skin care products, rubber and cleaning products.




Palm Oil Facts

Significant scientific findings about palm oil have arisen from painstaking research in many laboratories. Twelve of the many scientific facts about the nutritional effects of palm oil are presented here. Each fact has been thoroughly examined and evaluated by scientists in some of the world's most respected laboratories, using universally approved methods, to render them worthy of international acceptance.

This compilation of documented facts on the nutritional effects of palm oil has been published in full or in part in international scientific journals and is endorsed by committees of several of the most recognized and respected nutrition scientists in this field. (Refer : MPOPC Health, Nutrition and Palm Oil: A Compilation)

A Compilation of the Nutritional Effects of Palm Oil and Palm Olein

FACT 1: Palm Oil is Not Palm Kernel Oil or Coconut Oil - Palm oil from the fruit of the palm is physically and chemically different from either palm kernel oil which is derived from the seed, and from coconut oil, both of which are highly saturated.

FACT 2: Long Record of Safe Use - Palm oil has been a safe and nutritious source of edible oil for healthy humans for thousands of years. (1)

FACT 3: Consumed Worldwide - Palm oil and its liquid fraction, palm olein, are consumed worldwide as cooking oils and as constituents of margarines and shortenings; these oils are also incorporated into fat blends used in the manufacture of a variety of food products as well as in home food preparation.

FACT 4: Excellent Dietary Energy Source - Like other common edible fats and oils, palm oil is easily digested, absorbed and utilized in normal metabolic processes. It plays a useful role in meeting energy and essential fatty acid needs in many regions of the world. (2)

FACT 5: Free of Cholesterol and Trans Unsaturated Fatty Acids - Palm oil, like other vegetable oils, is cholestrol free. Having a moderate level of saturation, it does not require hydrogenation for use as a fat component in foods and, as such, does not contain trans fatty acids. (3,4)

FACT 6: Rich Carotenoids - Red (unprocessed) and red or golden (specially refined) palm oils, the major cooking oils in many parts of the world, are rich sources of beta-carotene, a precursor of Vitamin A, which some studies have found to have antioxidant properties.(5)

FACT 7: Vitamin E Antioxidants - Palm oil and palm oil products are naturally occuring sources of the antioxidant vitamin E constituents, tocopherols and tocotrienols. These natural antioxidants may act as scavengers of damaging oxygen free radicals. Some studies have suggested that antioxidants may play a protective role in cellular aging, atherosclerosis and cancer. (6,7,8,9) .

FACT 8: Balanced Fatty Acid Composition - Palm olein contains a mixture of polyunsaturated, monounsaturated and saturated fatty acids. The relative concentrations are 44% oleic acid, 10% linoleic acid, 40% palmitic acid and 5% stearic acid. The concentrations of palmitic and oleic acids are reversed in unfractionated palm oil i.e. 44% and 40% respectively. The fatty acid composition of palm oil is similar to that of the adipose tissue in most people on an ordinary diet.

FACT 9: Provides Linoleic Acid: An Essential Fatty Acid - Palm oil triglycerides carry linoleic acid predominately in the 2-position, which favors absorption and availability for use in the body

FACT 10: Favorable Nutritional Studies - Human feeding studies and epidemiologic data have found that palm oil and palm olein have effects on blood cholesterol levels that are similar to olive oils. (10,11) In several studies of normocholesterolemic men and women, a diet that included palm oil resulted in reduced blood cholesterol compared to entry level values, and palmitic acid (16:0) (which comprises 90% of palm oil) was found equivalent to oleic acid (18:1) insofar as it affected cholesterol metabolism. (11,12,13) There is evidence that a balance between linoleic (18:2) and palmitic (16:0) acids may be required to maximize HDL levels. (14) Substitution of palmitic acid (16:0) from palm oil or palm olein for the lauric acid (12:0) and myristic acid (14:0) combination from palm kernel or coconut oils leads to a decrease in plasma and LDL cholesterol. (15,16,17) Of several fats tested, including a fat blend approximating American intake, a palm oil-enriched diet fed to hamsters induced the highest level of protective HDL-chlolesterol and the greatest production of liver LDL receptors, key to removal of harmful LDL-cholesterol from the blood. (18)

FACT 11: Thrombosis - Rats fed a palm oil-enriched diet were found to have a reduced tendency for blood clotting. (19)

FACT 12: Cancer - Red palm olein is a source of carotenoids which some animal studies have found to inhibit some types of cancer. Animal studies have found that a diet containing palm oil, as compared to lard, beef tallow, corn oil and soybean oil, exerted an inhibitory effect on the development and incidence of experimentally -induced breast cancer in rats. (20,21) Animal and cellular studies have also found that tocotrienols inhibit the growth of cancer cells in vivo (22,23) as well as in vitro. (24,25)

12 NUTRITIONAL FACTS - REFERENCES
  1. Cottrell, R.C., (1991) Nutritional aspects of palm oil. Am. J. Clin. Nutr. 53: 989S - 1009S.
  2. Calloway, D.H. and Kurtz, G.W (1956) The absorbability of natural and modified fats. Food Research 21: 621-629.
  3. Agriculture Handbook 8-4 (1979). Composition of Foods, United States Department of Agriculture, Science and Education Administration, Washington, D.C.
  4. Life Sciences Research Office (1985). The Health Aspects of Trans-Fatty Acids, Federation of American Societies for Experimental Biology, Rockville, MD.
  5. Krinsky, N.I. (1993). Actions of carotenoids in biological systems. Ann. Rev. Nutr. 13:561-588.
  6. Walton, J.R. and Packer, L. (1980) Free radical damage and protection: relationship to cellular aging and cancer. In: Vitamin E, a Comprehensive Treatise, ed. L.J. Machlin, Marcel Dekker, Inc. New York, pp. 495-517.
  7. Hirai, S., Okamoto, K., and Morimatsu, M. (1982). Lipid peroxide in the aging process. In: Lipid Peroxides in Biology and Medicine, ed. K. Yagi, Academic Press, New York, pp. 305-315.
  8. Cross, C.E., (1987). Oxygen radicals and human disease. Ann. Int. Med. 197: 526-545.
  9. Elson, C.E. and Qureshi, A.A. (1995). Coupling the cholesterol and tumor- suppressive actions of palm oil to the impact of its minor constituents on 3- hydroxy-3-methylglutaryl coenzyme A reductase activity. Prosta. Leuko. Ess. Fatty Acids. 52: 205-208.
  10. Wood, R., Kubena, K., Tseng, S., Martin, G. and Crook, R. (1993). Effect of palm oil, margarine, butter and sunflower oil on the serum lipids and lipoproteins of normocholesterolemic middle-aged men. J. Nutr. Biochem. 4: 286-297.
  11. Ng, T.K.W, Hayes, K.C., de Witt, G.E, Jegathesan, M.,Satgunasingham, N., Ong, A.S.H. and Tan, D.T.S (1992). Palmitic and oleic acid exert similar effects on serum lipid profile in normocholestrolemic humans. J. Am. Coll. Nutr. 11: 383-390.
  12. Hayes, K.C., Pronczuk, A., and Khosla, P. (1995). A rationale for plasma cholesterol modulation by dietary fatty acids:Modelling the human response in animals. J. Nutr. Biochem., 6:188-194.
  13. Choudhury, N., Tan, L., and Truswell, A.S. (1995). Comparison of palm olein and olive oil: Effects on plasma lipids and Vitamin E in young adults. Am. J. Clin. Nutr. 61:1043-
  14. Sundram, K., Hayes, K.C. and Siru, O.H. (1995). Both dietary 18:2 and 16:0 may be required to improve the serum LDL/HDL cholesterol ratio in normocholesterolemic men. J. Nutr. Biochem., 6: 179-187.
  15. Ng, T.K.W, Hassan, K., Lim, J.B. Lye, M.S. and Ishak, R. (1991). Non- hypercholesterolemic effects of a palm oil diet in Malaysian volunteers. Am. J. Clin. Nutr. 53:1015S-1020S.
  16. Sundram, K., Hayes, K.C., and Siru, O.H. (1994). Dietary palmitic acid results in a lower serum cholesterol than a lauric-myristic acid combination in normolipemic humans. Am. J. Clin. Nutr. 59: 841-846.
  17. Hayes, K.C., Pronczuk, A., Lindsey, S. and Diersen-Schade, D. (1991). Dietary saturated fatty acids (12:0, 14:0, 16:0) differ in their impact on plasma cholesterol and lipoproteins in human primates. Am. J. Clin. Nutr. 53: 491-498.
  18. Lindsey, S., Benattar, J. Pronczuk, A. and Hayes, K.C. (1990). Dietary palmitic acid (16:0) enhances HDL cholesterol and LDL receptor RNA abundance in hamsters. Proc. Soc. Exp. Biol. Med. 195: 261-269.
  19. Hornstra, G., (1988). Dietary lipids and cardiovascular disease. Effects of palm oil. Oleagineux 43: 75-81.
  20. Sylvester. P.W., Russell, N., lp, M.M. and lp, C. (1986). Comparative effects of different animal and vegetable fats fed before and during carcinogen administration on mammary tumorigenesis, sexual maturation and endocrine function in rats. Cancer Res. 46: 757-762.
  21. Sundram, K., Khor. H.T., Ong, A.S.H. and Pathmarathan, R. (1989). Effect of dietary palm oils on mammary carcinogenesis in female rats induced by 7,12- dimethylbenz (a) anthracene. Cancer Res. 49: 1447-1451.
  22. Komiyama, K., Iizuka, K., Yamaoka, M., Watanabe, H.,Tsuchiya, N and Umezawa, 1. (1989). Studies on the biological activities of tocotrienols. Chem. Pharm. Bull. 37:1369-1371.
  23. Goh, S.H., Hew, N.F., Norhanom, A.W. and Yadav, M. (1994). Inhibition of tumor promotion by various palm oil tocotrienols. Int. J. Cancer. 57:529-531.
  24. Guthrie, N. Nesaretnam, K., Chambers, A.F. and Carroll, K.K. (1993). Inhibition of breast cancer cell growth by tocotrienols. FASEB J. 7:A70.
  25. Guthrie, N., Chambers, A.F, Gapor, A. and Carrol, K.K. (1995). In vitro inhibition of proliferation of receptor-positive MCF-7 human breast cancer cells by palm oil tocotrienols. FASEB J. 9:A988

Palm Oil Food Products

Palm Oil

Palm oil is derived from the flesh of the fruit of the oil palm species E. Guineensis. In its virgin form, the oil is bright orange-red due to the high content of carotene. Palm oil is semi-solid at room temperature; a characteristic brought about by its approx. 50 percent saturation level. Palm oil (and its products) has good resistance to oxidation and heat at prolonged elevated temperatures; hence, making palm oil an ideal ingredient in frying oil blends. Manufacturers and end-users around the world incorporate high percentages of palm oil in their frying oil blends for both performance and economic reasons. In fact, in many instances, palm oil has been used as 100 percent replacement for traditional hydrogenated seed oils such as soybean oil and canola. Products fried in palm oil include potato chips, french fries, doughnuts, ramen noodles and nuts.

Another positive attribute of palm oil as a frying oil is that it imparts longer shelf life to the fried products; generally attributed to comfortable level of unsaturation, absence of linolenic acid and presence of natural antioxidants in the oil. See palm olein below for more information. Palm oil, because of its natural solid-liquid content, is suited to be used in high percentages in vegetable oil shortenings, biscuit fats and bakery fats. In margarine production, palm oil is highly suited as a component as it imparts the desirable beta prime crystalline tendency in the fat blend. Palm oil's natural semi-solid consistency means need for no or little hydrogenation. Palm oil and many of its products mention below also find uses as ice cream fats, in vanaspati, soups mixes - dry and canned, with little or no further modifications.

Palm Olein

Palm olein is the liquid fraction obtained by fractionation of palm oil after crystallization at controlled temperatures. The physical characteristics of palm olein differ from those of palm oil. It is fully liquid in warm climate and has a narrow range of glycerides. In addition to finding uses as in the case of palm oil, palm olein is widely used as a cooking oil. It also blends perfectly with other popular vegetable oils that are traditionally used in many parts of the world ; prompting a nickname 'blending partner' for palm olein. For example, in Japan, refined palm olein is blended with rice bran and in Malaysia, it is blended with groundnut oil.

Like palm oil, palm olein is also widely used as a frying oil and much of its popularity is due to its good resistance to oxidation and formation of breakdown products at frying temperatures and longer shelf life of finished products. In fact, palm olein is considered as the gold standard in frying and is perhaps, on its own, the most widely used frying oil in the world!

Palm Stearin

Palm stearin is the more solid fraction obtained by fractionation of palm oil after crystallization at controlled temperatures. It is thus a co product of palm olein. It is always traded at a discount to palm oil and palm olein; making it an cost effective ingredient in several applications. The physical characteristics of palm stearin differ significantly from those of palm oil and it is available in a wider range of melting points and iodine values.

Palm stearin is a very useful source of fully natural hard fat component for products such as shortening and pastry and bakery margarines. In addition to palm olein and stearin, there are easily a dozen other fractions, obtained from palm oil including various grades of double fractionated palm olein (aka superolein) and palm mid fractions. Where pourability and clarity can be issues for palm olein, especially in temperate countries, superolein finds uses as frying oil and cooking oil, usually in blends with seed oils. Palm mid fraction is commonly used as a highly versatile natural ingredient in the manufacture of tub margarine and in CBE manufacture.

Palm Kernel Oil

Palm kernel oil is obtained from the kernel of the oil palm fruit. The oil composition is very different from that of the palm oil. Click.

Palm Kernel Olein

Palm kernel olein is the liquid component of palm kernel oil obtained from fractionation.

Palm Kernel Stearin

Palm kernel sterain is the more solid fraction of palm kernel oil obtained from fractionation. Palm kernel oil, palm kernel olein and palm kernel stearin find uses in margarine, confectioneries, coffee whitener, filled milk, biscuit cream and coating fats; with little or no further processing. There is a growing trend to use palm kernel oil products as an ingredient in the production of non-hydrogenated trans fat free margarine.

Palm kernel stearin is widely used to substitute for the more expensive cocoa butter in many of its traditional applications. In some instances, particularly when hydrogenated, palm kernel stearin exhibits performance superior to that of cocoa butter. Apart from their excellent melting properties, hydrogenated palm kernel oil products generally have good resistance to fat bloom and show good resistance to oxidative stress.

Anatomy of Palm

Oil palm is the only fruit that can give two types of oil. Palm oil comes from the mesocarp (flesh of the fruit) and the lauric palm kernel oil from the kernel at the fruit's core. The two oils are separated in the oil palm bunches by the thick shell of palm kernels.

Palm Oil

Palm oil is said to be nature's gift to the world. Consumed for more than 5,000 years, its nutritional value, health benefits and value as a natural resource continue to be discovered even today.

First introduced to Malaysia in 1870 as an ornamental plant, the Elaeis Guineensis tree, also known as the oil palm, is now a leading agricultural crop. Since then, increased planting, cultivation and refinement have led to the introduction of a wide range of processed palm oil products. Today, palm fruit oil and palm oil products are used in many food and non-food applications. They can be used for frying media and for making margarines, shortenings, soap, oleo chemicals and other products. Oil palm is the only fruit that can give two types of oil, extracted from the fruit of the oil palm (Elaeis guineensis) which are chemically different.

Palm oil comes from the mesocarp (flesh of the fruit) and the lauric palm kernel oil from the kernel at the fruit's core. The two oils are separated in the oil palm bunches by the thick shell of palm kernels. Semi-solid at room temperature, these oils or fats can be fractionated into solid and liquid fractions known as stearins and oleins respectively. They can also be processed through physical or chemical refining to yield either refined, bleached and deodorized (RBD) or neutralized, bleached and deodorized (NBD) palm oil and palm kernel oil. Combinations of these processes lead to various types of palm oil and palm kernel oil products.

Tuesday, April 1, 2008

Soy Biodiesel

Hard-working diesel engines deserve a little appreciation. So treat yours to soy biodiesel. Its diesel fuel made from U.S. soybeans and developed with the help of soybean farmers and their checkoff. It works in any diesel engine, and since its produced domestically, more money goes back into local economies rather than overseas.

Better for your engine

You can make the change to soy biodiesel without any modifications to your diesel engine. In fact, the only change youre likely to see is less wear and tear. Because soy biodiesel has a higher fuel lubricity than petroleum diesel, things just run a bit more smoothly. Thats part of the reason that the American Trucking Associations and major manufacturers like Chrysler, Cummins, Detroit Diesel, General Motors, Volkswagen and Volvo endorse soy biodiesel blends. Try it. Your engine will thank you.

Better for the environment and your health
Soy biodiesel production is also better for the environment. Theres much more energy in a gallon of soy biodiesel than whats required to produce it. And growing things like soybeans take carbon out of the atmosphere to use for photosynthesis, helping to further curb global warming. Soy biodiesel is the only alternative fuel to fully pass the health effects testing requirements of the Clean Air Act. Less particulate matter a leading cause of asthma is released when burning soy biodiesel. And soy biodiesel exhaust also has 80 percent to 90 percent fewer cancer-causing compounds than petroleum diesel.Using soy biodiesel can really shrink your environmental footprint. In addition to decreasing exhaust levels of many greenhouse gases, its less toxic than table salt and biodegrades as quickly as sugar.

Using soy biodiesel
Its time to do something nice for your engine and for the environment. Next time you fill up, make it soy biodiesel. Most soy biodiesel is sold blended with petroleum diesel. The most common blends are B2, B5 and B20, meaning 2 percent, 5 percent and 20 percent blends of soy biodiesel, respectively. To find a BQ-9000-certified supplier near you, just visit the National Biodiesel Board Web site, biodiesel.org. Or if youre on the road, call the toll-free hotline, 866-BIODIESEL to find a pump anywhere in the United States.

Farmer

Your soybean checkoff is committed to building a strong future for U.S. soybean farmers. Researching value-added traits, exploring new uses, promoting soy biodiesel, supporting domestic animal agriculture, expanding overseas markets and examining new marketing opportunities are just a few of the ways your checkoff investment helps accomplish that goal.

Demand doesn't stop at the elevator

Soy biodiesel, animal agriculture, exports, edible soybean oil and new uses are five major areas of U.S. soybean demand. The links to the left have more information about these end-uses and ways you can choose varieties that maximize your demand.

A focus on the future
As part of Soy 2020, your soybean checkoff is working with other members of the soybean value chain to predict the trends, market forces, challenges and opportunities that will affect our industry through the year 2020. By creating a unified vision for the future, your checkoff is helping ensure continued competitiveness for your soybeans in the global marketplace.

Tools for a successful season
We've gathered a list of soybean production resources on subjects you care about. Subjects like soybean rust detection and pest control. We update these checkoff-funded production resources frequently to make sure you have the latest information.

Your checkoff investment checks out
Know where your checkoff funds are going - and what they're accomplishing - by clicking on the links below. You will find some of the checkoff-funded accomplishments as well as the 2006 Annual Report for a more in-depth look at these programs.

Soybean

The soybean (U.S.) or soya bean (UK) (Glycine max) is a species of legume native to East Asia. It is an annual plant that may vary in growth, habit, and height. It may grow prostrate, not growing higher than 20 cm (7.8 inches), or even up to 2 meters (6.5 feet) in height. The pods, stems, and leaves are covered with fine brown or gray hairs. The leaves are trifoliolate, having 3 leaflets per leaf, and the leaflets are 6–15 cm (2–6 inches) long and 2–7 cm (1–3 inches) broad. The leaves fall before the seeds are mature. The small, inconspicuous, self-fertile flowers are borne in the axil of the leaf and are white, pink or purple. The fruit is a hairy pod that grows in clusters of 3–5, with each pod 3–8 cm (1–3 inches) long and usually containing 2–4 (rarely more) seeds 5–11 mm in diameter.

Overview
Like some other crops of long domestication, the relationship of the modern soybean to wild-growing species can no longer be traced with any degree of certainty. It is a cultural variety (a cultigen) with a very large number of cultivars. However, it is known that the progenitor of the modern soybean was a vine-like plant that grew prone on the ground.

The genus Glycine Willd. is divided into two subgenera (species), Glycine and Soja. The subgenus Soja(Moench) includes the cultivated Soybean, G. max (L.) Merrill, and the wild soybean, G. soja Sieb.& Zucc. Both species are annual. The soybean grows only under cultivation while G. soja grows wild in China, Japan, Korea, Taiwan and Russia. Glycine soja is the wild ancestor of the soybean: the wild progenitor. At present, the subgenus Glycine consists of at least 16 wild perennial species: for example, Glycine canescens, and G. tomentella Hayata found in Australia and Papua New Guinea sauce; soya comes from the Dutch adaptation of the same word.

'Sweet' Biofuels Research Goes Down On the Farm

Oklahoma State University’s sorghum-related biofuels research is taking a localized approach, with the aim of making possible the effective production of ethanol in the farmer’s own field. Sweet sorghum can be grown throughout temperate climate zones of the United States, including Oklahoma. It provides high biomass yield with low irrigation and fertilizer requirements. Corn ethanol, in contrast, requires significant amounts of water for growing and processing.

Best of all, producing ethanol from sweet sorghum is relatively easy, said Danielle Bellmer, biosystems engineer with the OSU Division of Agricultural Sciences and Natural Resources’ Robert M. Kerr Food and Agricultural Products Center. “Just press the juice from the stalk, add yeast, allow fermentation to take place and you have ethanol,” Bellmer said. “Unfortunately, the simple sugars derived from sweet sorghum have to be fermented immediately.”

Throw in the expense of constructing and operating a central processing facility that would only operate the four to five months of the year when sorghum would be available in Oklahoma and the challenge multiplies. The beginnings of a possible solution presented itself when entrepreneur Lee McClune, president of Sorganol Production Co. Inc., approached FAPC scientists seeking their assistance in testing his newly designed field harvester capable of pressing and collecting juice from sweet sorghum. His proposed Sorganol process involved using the harvester, large storage bladders for fermentation and a mobile distillation unit for ethanol purification. OSU’s initial involvement in the project was to look at the feasibility of fermenting the juice in the field. “We’re examining such things as juice extraction efficiency, whether or not pH (acidity) or nutrient adjustment of the juice is needed and various environmental factors,” Bellmer said. The goal is to make production of ethanol from sweet sorghum economically viable by using an in-field processing system that minimizes transportation costs and capital investment.

Equipment such as the harvester and other technology could be owned individually or cooperatively with a number of producers sharing and possibly helping one another process ethanol from sweet sorghum. In Oklahoma, the potential processing scenario might look like this: Plant sweet sorghum around mid-April, and then stagger plantings for two to three months. This would provide a harvest window of August through November. “Ethanol yields in Oklahoma could range from 300 gallons to 600 gallons per acre, depending on biomass yield, sugar content and juice expression efficiency,” said Chad Godsey, biofuels team member and OSU Cooperative Extension cropping systems specialist with the department of plant and soil sciences. Godsey said the team is working to determine the maximum possible harvest window for sweet sorghum in Oklahoma. “Obviously, the longer the harvest window, the more ethanol state farmers will be able to produce,” he said. OSU Biofuels Team researchers also are studying environmental parameters that may affect the feasibility of on-farm fermentation. A producer must be able to ferment the juice in the field during Oklahoma’s harvest season for sweet sorghum, which occurs in the fall when temperature extremes are highly possible. “Temperature can speed up, slow down or derail the fermentation process,” Godsey said.

Weather data for Oklahoma indicate an average low temperature of about 44 degrees Fahrenheit and an average high temperature of approximately 98 degrees Fahrenheit during the August-through-October period over the past 10 years. Six test plot sites are maintained at Oklahoma Agricultural Experiment Station facilities across the state, allowing OSU scientists to conduct research on sweet sorghum under local conditions. “We would like to do with sweet sorghum what the Brazilians have done with sugar cane: In Brazil, sugar cane ethanol provides a large percentage of their fuel needs,” Bellmer said. The idea of using sweet sorghum for commercial ethanol production is not new. The reason sweet sorghum is not as popular as corn in terms of being a source of ethanol in the United States has been the need to ferment its simple sugars immediately and the high costs associated with a central processing plant that is operated only seasonally. “By determining a process by which agricultural producers can create ethanol in the field from sweet sorghum, that barrier is removed,” Bellmer said. “Producers will then have a much higher value product to sell.”

Friday, March 28, 2008

History and Design of the Herb Garden

The elegant design of the Robison York State Herb Garden belies its history as a boisterous playground during the decades when Plantations' headquarters building was an elementary school for the neighborhood children of Forest Home. After the school closed in 1964, the idea of an herb garden for Cornell University began to flourish, championed in part by Audrey Harkness O'Connor, who was editor of Cornell Plantations Magazine at the time. Richard M. Lewis, then director of Cornell Plantations, sketched the original design concept on a paper towel! It took ten years, however, to raise the funds, assemble the materials, and construct the garden. In 1974, the herb garden was finally dedicated to the late Doris Burgess Robison, an accomplished gardener, as a gift from her husband, Ellis H. Robison '18. Garden Design magazine recently called this herb garden one of the best in America.

Our herb garden is true to its upstate New York origins. Notice the walls of native stone - some retrieved from the old building foundation under the farmhouse of Ezra Cornell, the university founder. The wrought iron gates date from about 1800. The split rail fences are also typical of this region. At the base of the sundial in the middle of the garden is a round millstone from one of the numerous mills that once lined nearby Fall Creek. See if you can also find the stone stile built into the wall at the southeast corner of the garden and Elfriede Abbe's bronze sculpture of the "Yarb Woman" (a gift of our local herb society, Auraca Herbarists), just outside the garden at the end of the pergola.

Visitors love the Robison York State Herb Garden because of its diversity and its thematic presentations. It is, in essence, a reference collection of living plants that have been important in human culture throughout the ages. Mingled within its beds and borders are plants of the ancient world, plants used by Native Americans, and culinary plants from every corner of the globe. Let your senses explore fragrant herbs, edible flowers, and scented geraniums. Linger on the stone seats for an intimate view of the herbs in the raised beds. Learn more from the labels on every plant.

What Are Herbs?

Herbs are defined by their use or significance to humankind. They include plants valued as flavorings, medicines, and fragrances, as well as those put to other practical household or commercial use. In addition, the realm of herbs includes plants with symbolic significance or historical interests. For this reason, plants celebrated in literature, myth, and ritual also have a place in the herb garden.

Rather than being staples of life, like our basic food crops, herbs contribute to our quality of life and enhance its pleasures. A stroll through the herb garden reveals the deep and enduring connection between plants and people that has existed throughout the ages.

Research at Plantations

As spring tiptoes in, my mind fills with the memory of spring woods carpeted with the delicate flowers of trillium and the quiet flutter of the wings of wood whites. The butterfly season is just beginning again, first with the emergence of overwintering and migrating butterflies like mourning cloaks and painted ladies, and later with vast numbers of other fascinating butterflies. It has been a year now since I surveyed the butterflies of McLean Bog (a Lloyd Preserve) as a Tang intern with Cornell Plantations' natural areas.

The McLean preserve has been an important area for butterfly watchers for almost a century. In the 1920s William T.M. Forbes (an entomology professor at Cornell) found 41 species of butterflies there. I and Robert Dirig, assistant curator of the Bailey Hortorium Herbarium, recently re-surveyed the area. Our research during the 1997 season revealed a total of 51 butterfly species, not all of which corresponded to those found historically.

Sadly, some butterfly species, like the Arctic skipper and pepper and salt skipper, have not been seen for many years. Other losses include the brown elfin, a small butterfly that feeds on blueberry plants, and the American copper which used to feed on the sheep sorrel along the right of way. However, in this seven-decade interim, although McLean witnessed the disappearance of nine species, it has also witnessed the exciting discovery of 19 others. So the gains do exceed the losses!

Some species, including the wood white, disappeared temporarily between the 1950s and 1970s but then rebounded. Its disappearance may have been caused by aerial spraying of insecticides for gypsy moth control.

New species found since the 1920s include the orange sulfur, with its brilliant patches of orange, which was first seen in the area around 1930. The European skipper, an exotic species that has been spreading across the Eastern states, appeared during the 1970s at McLean. New discoveries for 1997 included the ringlet, a little peach colored butterfly with fairylike markings; and the broad winged skipper, which features brilliant flashes of orange on its hind wings and flits from milkweed to milkweed in the sunny swamps. In addition, the golden Delaware skipper was found for the first time at McLean, basking in the large fen. A new butterfly checklist which includes all butterfly species found at McLean Bog is now available from Plantations gift shop.

Fall in love with Plantations

With every piece of land comes a piece of history and as time changes so we create history of our own.It so happened that the original farms in the Upper Highway area were once owned by the well known Gillitt family and as time progressed these farms were subdivided and sold off,creating all the areas as we know them today.

One beautiful piece of land remained and after it having been in the Gillitt family for over 130 years this extraordinary 86 ha sugar estate was finally sold to a developer with a vision who together with his fantastic team of architects created this unique "Old World"Tuscan village.

What was once an abstract vision has been made reality, resulting in one of the most beautiful lifestyle estates in South Africa. Hundreds of families have found their home in Plantations and enjoy the beauty and security of this magnificent Tuscan style estate.

Wednesday, March 26, 2008

Plantations around Medan

Medan was surrounded by plantations which nowadays form integral parts of the city. The names clearly show the origin of the nationality of the investors who started the plantation. In the north along the Sunggal river several plantations were founded, as there were Arendsburg, named after one of the first Dutch planters, and a plantation with the French name of Persévérance, which means persistence. There was the plantation Rotterdam, named after the Dutch harbour town of Rotterdam, and a plantation with the English name of Enterprise. Also to the north was the estate Sempali, an Indonesian local name, opened in 1889 by the Deli company on the grounds of the former estate Petersburg, named after the Russian town of Saint Petersburg, established by a Russian planter, and Annidale, a British name. Besides Sempali were the plantations Germania, which means Germany, Saëntis, a local name, Maryland, which was a British name and Mabar, a local name, all north of the city. In 1865 the German planter von Mach together with the Swiss planters Mots and Breker settled in Deli. The last two established the tobacco plantation Konigsgrätz, later called Helvetia, the Latin name for Switzerland. (18) The name Helvetia in the northern part of the city is still in use in Medan today. South of the city centre between the Deli and the Babura river was the plantation Polonia of the Polishman Michalsky. In 1919 this concession was handed over to the municipality by the sultan of Deli and a villaparc for the European community was built on these fields, named Polonia. In the nineteen twenties beside the villapark the airfield was built with the present name of Polonia Airport. Southeast of the city the Dutch Leyssius had opened a plantation Gedong Djohore. This was a local name. The plantation is since the nineteen fifties no longer existent and several housing complexes have been built in this area. In the same area were the plantations Rudolphsburg, named after the German emperor Rudolph, Padang Boelan and Amplas, both local names, in former days all owned by the Amsterdam Deli Company. East of Medan on the other side of the Babura river, was the plantation Padang Boelan opened by the Dutch van der Sluis. In the nineteen sixties the University of North Sumatra was established on these fields. More to the north two other plantations, Sipoet and Rudolphsburg of the German Pechul, became part of Padang Boelan. Further east of the city was the estate Arnhemia, owned by the Rotterdam Deli Company. Arnhemia was named after the city of Arnhem in the Netherlands. Nowadays the place is called Pancar Batu, located around 15 kilometres outside Medan on the road to Brastagi. West of Medan at the Pertjoet river the estate Amplas was opened by the Dutch Huber and Tandjong Morawa by the Germans Nacher and Grob, which became the head office of the Senembah Company. Tandjong Morawa, a mix of the local name of Tandjong and Morawa or Moravia in the former Chechoslowakia, was the first tobacco plantation in Serdang. Tandjong (Tanjung) Morawa today is still the head office of PTP II, one of the present Indonesian national plantation companies. In 1872 the plantation Mariëndal, also west of the city, was established. (19) The name Mariëndal, after an estate near Arnhem, the Netherlands, is still in use. In the year 1872 there were established 13 plantations in Deli, 1 in Langkat and 1 in Serdang. In 1890 there were over 170 plantations all over Sumatra's east coast. (20) As showed above the names of many plantations around Medan reflected the nationality of the entrepreneur who had started the estate.

Tuesday, March 25, 2008

Palm Oil Production Prospects Continue to Grow

A significant change in the oil palm industry has taken place during the past season, as Indonesia surpassed Malaysia in production of palm oil and is now the world leader. This designation will continue and Indonesia’s production rate will outpace Malaysia for the foreseeable future. Personnel from the USDA Foreign Agricultural Service (FAS) conducted crop-assessment travel in the main palm oil production regions of Sumatra and West Kalimantan during August and September. The team met with palm oil estate managers, agricultural officials, researchers, and independent commodity analysts. The plantation visits were targeted in the country’s most important producing provinces. Regular surveys of fruit bunches three months prior to harvest were indicative of an output surge in fresh fruit bunches. Assuming normal rainfall and based on bunch counts there will be a surge in production during the last quarter of 2007 and into early 2008. In contrast, drier than normal conditions at the beginning of the year marginally reduced output for about three months. Oil production for all major producing areas is favorable despite some dryness in early 2007. Indonesia is forecast to produce 18.3 million metric tons of palm oil in 2007/08.
Palm Oil Production Prospects Continue to GrowPalm oil comes from the fruit of the oil palm tree, a tropical species that originated in West Africa, but now grows as a hybrid in many parts of the world, including SE Asia and Central America. The relatively low priced oil is used for a variety of purposes. The world demand for palm oil has soared in the last two decades, first for its use in food, consumer products and more recently as the raw material forf biofuel. The growing affluence of India and China, the worlds top two importing nations, will increase demand of edible vegetable oils. In the US, a recent wave of dietary focus on the trans-fat issues has led to increased consumption. In addition to being less expensive, palm oil is semi-solid at room temperature, making it ideal for baking and food production. Many food manufacturers are trying to find alternatives to trans-fat, partially hydrogenated oils, which contribute to heart disease and other medical problems. Although, palm oil is not without its own contribution to heart disease, the focus on the transfat issue has resulted in palm oil being considered more healthful than some other fats. The other major factor of palm production is its role in sustainable energy campaigns around the globe. European countries have promoted the use of palm oil by injecting hundreds of millions of dollars into national subsidies towards bio-diesel. Europe is now a leading importer of palm oil. Through the subsidizing of biofuels, European governments have accelerated the demand for palm oil in Europe, and as a consequence have accelerated the conversion of large areas of rainforest in South East Asia. Palm oil plantations are often expanded by clearing existing forest land and draining peat swamps. Many economists predict it will be the leading internationally traded edible oil by the year 2012.

Today, Malaysia and Indonesia account for about 87 percent of world production
Palm Oil Production Prospects Continue to Grow

Distribution of Palm Oil Area and by Holdings

Although essentially an estate crop, oil palm has been successfully adapted to suit the needs of smallholders and has proved a powerful tool for poverty alleviation in Indonesia, positively affecting millions. Significant improvement in living standards, including income, education and health levels are attributed to the economic development benefits of oil palm cultivation. Total growing area is distributed among three groups, which include government holdings, private companies and small holders. According to Indonesia Bureau of Statistics (BPS) in 2006, 45 percent of total palm area is owned by private companies, followed closely at 43 percent by small holders, and the government comprising the remaining 12 percent. Small holders are frequently part of partnership scheme with private companies. Total area for Indonesia palm oil in 2006 is estimated at 6.07 million hectares according to a information from the Indonesia Palm Oil Board (IPOB).

Photograph showing six year old plantation palms just begining productive years
Distribution of Palm Oil Area and by HoldingsProspects For The Future
The government of Indonesia’s development of palm oil production through land concessions to large companies, government plantations, and small holder programs has been clearly successful in securing edible oil and generating foreign exchange. The subsequent rise in palm oil production has also resulted in the loss of tropical rain forests and generated major concerns about the effect of palm oil production on habitat loss for many endangered species and the reduction of biodiversity. Most recently, the Indonesian government, working with some palm oil producing companies is negotiating sustainability standards with Europe and the United States under the auspices of Roundtable on Sustainable Palm Oil (RSPO). RSPO is an international organization of producers, distributors, conservationists and other stakeholders. During plantation visits on Sumatra and Borneo, Cargill and Musim Mas; the agricultural assessment team was shown many of the sustainable practices and positive reinvestments made back into the work force and the surrounding community. The team was shown projects such as schools, nurseries, clinics, and produce markets. The demand for palm oil will likely remain strong and research and development work is being done in both top producing countries of Indonesia and Malaysia. Yields will steadily increase as the newly planted areas enter into their twenty year plus productive lifecycle. In addition, replanting will continue to adopt better suited varieties developed from hybrid research and cloning. The availability of land in Indonesia, coupled with recent years of high seed sales, record energy prices, and high vegetable oil prices are factors that will result in Indonesia continuing to lead the world in palm oil production for years to come.
A plantation’s long term success depends in part on well timed replanting operations. This requires a steady supply of high quality seed, seedlings, and young palms from breeders and nursery operations who specialize in this part of the industry. The availability of quality hybrid seeds is essential for establishing plantations and replanting. Only the highest quality seeds are selected for use. Seeds are hand inspected for quality characteristics prior to being released for sale or use. A germinated seed is cultured in the pre-nursery for 3 months, then moved to a nursery to develop for an additional 9 to 10 months. After this initial phase from germination to plant establishment of one year, the plants are culled for the best characteristics and then planted in the field. After 30 to 36 months in the field the young palms begin to produce the first harvestable fruit bunches. The first bunches are small and weigh only 2 to 3 kg and the individual fruitlets comprising the bunch are small in size. Peak harvest (or palm productivity) occurs from years 8 to 15. The economically viable life span of an oil palm is typically 22 to 25 years depending upon oil price, economically harvestable height, and yield. Oil palms can exceed 70 to 100 feet in height, however they are typically removed from production when they reach 25 feet, which coincides with an average age of 25 years. The 25 feet height is an industry limit which is based loosely on the height of the average harvester plus the length of the long sickle harvesting pole.
Distribution of Palm Oil Area and by Holdings

Indonesia Geography

The country of Indonesia is a huge archipelagic nation whose extent is roughly 3,200 miles east to west and 1,100 miles north to south. It encompasses over 10,000 islands. The five main islands of the archipelago are Sumatra, Java, Borneo, Sulawesi, and Western New Guinea. The islands of Borneo and Western New Guinea are shared with other nations. Borneo (also known as Kalimantan) is shared with Malaysia and Brunei. Western New Guinea (also known as Irian Jaya) shares the island of New Guinea with Papua New Guinea. Indonesia's total land area is slightly greater than 1.2 million square miles (the equivalent of Alaska, Texas, California and Montana combined). In Indonesia, the province is the highest tier of subnational government. Currently, Indonesia consists of 33 provinces, seven of which have been created since 2000. The island of Sumatra consists of the provinces of Daerah Istimewa Aceh, Riau, Jambi, Bengkulu, Lampung, and North, South, and West Sumatra. Indonesia's region of Borneo is called Kalimantan, while Malaysia's region of Borneo is called East Malaysia. On Borneo there are four Indonesian provinces, they are East, South, West and Central Kalimantan.

Five Major Islands of Indonesia
FAS Field Visits
Major oil producing provinces visited by FAS include: North Sumatra, Riau, and South Sumatra (Sumatera Selatan) on the island of Sumatra. On the island of Borneo, field visits were conducted on the province of West Kalimantan (Kalimantan Tengah). Palm oil producing areas have slowly expanded since the early 20th century when the palm was first introduced. The island of Sumatra has long been the largest producer. The oldest large-scale plantations were first established in 1911 on Aceh and North Sumatra province. Since those early days, palm plantation development spread south and to the other areas of Indonesia. The highest producing provinces on Sumatra, are North Sumatra, Riau, and South Sumatra. Even though the bulk of Indonesia’s production remains on Sumatra, 70 to 80 percent according to some sources, rapid expansion is occurring on the island of Borneo; the second largest producing area in Indonesia. In recent years, there has been a growing expansion of palm oil plantations on the island of Borneo—particularly in Central and West Kalimantan. Important, but secondary areas of expansion are Sulawesi and Western New Guinea (or West Papua). Even with the expansion areas, Sumatra will continue to be the leading production center for the foreseeable future. The following image is a satellite scene and FAS field travel routes (in yellow) that covered major palm oil producing provinces on the islands of Sumatra and Borneo.
FAS Palm Oil Plantation Travel Routers
Area Expansion
Over the next few years, the pace of Indonesian palm oil production is expected to dominate other producing countries and rise steadily, assuming continued high prices and favorable weather. This continued increase in production is a result of area expansion. It is the availability of land on Borneo and other previously non-developed areas that has allowed Indonesia to become the top producer. The current (December) USDA production forecast of 2007/08 Indonesia Palm Oil is 18.3 million tons. This a 10 percent increase from last year's estimated production of 16.6 million tons. Production of palm oil has continued to climb steadily since 1998. New regions on the islands of Sumatra, Borneo, Sulawesi and West Papua have been opened up in recent years and have added significant area that only now is coming on-stream in terms of production. In addition to new areas of land developed, another reason for the growing production numbers is that the surge in planting activity during the past ten years is now beginning to be realized. There is several years lag time when palms are initially planted on the plantation until the first production of fruit bunches. Data on actual area planted to oil palm is not easily obtained. Where government data does exist, many in theindustry believe that the government data is not as complete as it might be, often having production estimates lower than those of the industry. One proxy source of area data is oil palm seed sales. Data presented at the International Palm Oil Congress 2007 on seed sales reveals a rapid increase in demand, so much that seed producers have had difficultly keeping up with demand.

Seeds and Planting Materials
Nearly 100 percent of oil palms growing today in Indonesia are the DxP or Tenera hybrid. The Tenera, is a hybrid cross of the Dura and Pisifera oil palm varieties. The Dura line is the mother line, while pollen is used from the Pisifera. Until recently planting material wase only available in the form of germinated hybrid seeds. In the last few years some plantation research and development laboratories have successfully cloned parent lines to produce hybrid seed of high yielding Tenera from young leaf tissue cultures. Large scale production of this clone is of intense interest to the industry. Early studies of clonal yields show yield increases of about 10 to 30 percent above the standard DxP hybrid. These clones are not typically sold. They are almost always used internally by various developing plantations for area expansion and replanting purposes. The main suppliers of germinated oil palm seeds in Indonesia fall in three groups: the large and well established plantations of London Sumatra, Socfindo, the government agency of Marihat, and a group of new producers. The recent increase in demand has brought new seed producers into the market place such as the plantation group of Binasawit Makmur.

High Quality Oil Palm Seeds